XXXVII. Reversion of power series

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fast algorithm for reversion of power series

We give an algorithm for reversion of formal power series, based on an efficient way to evaluate the Lagrange inversion formula. Our algorithm requires O(n1/2(M(n)+MM(n1/2))) operations where M(n) and MM(n) are the costs of polynomial and matrix multiplication respectively. This matches an algorithm of Brent and Kung, but we achieve a constant factor speedup whose magnitude depends on the polyn...

متن کامل

Uniserial modules of generalized power series

Let R be a ring, M a right R-module and (S,≤) a strictly ordered monoid. In this paper we will show that if (S,≤) is a strictly ordered monoid satisfying the condition that 0 ≤ s for all s ∈ S, then the module [[MS,≤]] of generalized power series is a uniserial right [[RS,≤]] ]]-module if and only if M is a simple right R-module and S is a chain monoid.

متن کامل

The power and size of mean reversion tests

The power of mean reversion tests has long been a tacit issue of the market efficiency literature. Early tests of market efficiency, as summarized in Fama Ž . 1970 , found no economically significant evidence of serial correlation in stock Ž . returns. However, Summers 1986 later suggested that this was because these tests lacked power: Summers suggested a model of AfadsB in which stock prices ...

متن کامل

ON ANNIHILATOR PROPERTIES OF INVERSE SKEW POWER SERIES RINGS

Let $alpha$ be an automorphism of a ring $R$. The authors [On skewinverse Laurent-serieswise Armendariz rings, Comm. Algebra 40(1)(2012) 138-156] applied the concept of Armendariz rings to inverseskew Laurent series rings and introduced skew inverseLaurent-serieswise Armendariz rings. In this article, we study on aspecial type of these rings and introduce strongly Armendariz ringsof inverse ske...

متن کامل

ALGEBRAIC INDEPENENCE OF CERTAIN FORMAL POWER SERIES (II)

We shall extend the results of [5] and prove that if f = Z o a x ? Z [[X]] is algebraic over Q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over Q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over Q (x) if and only if f , f ,.., f are algebraically independent over Q (x)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science

سال: 1910

ISSN: 1941-5982,1941-5990

DOI: 10.1080/14786440308636811